High tidal volume ventilation induces NOS2 and impairs cAMP- dependent air space fluid clearance.

نویسندگان

  • James A Frank
  • Jean-Francois Pittet
  • Hyon Lee
  • Micaela Godzich
  • Michael A Matthay
چکیده

Tidal volume reduction during mechanical ventilation reduces mortality in patients with acute lung injury and the acute respiratory distress syndrome. To determine the mechanisms underlying the protective effect of low tidal volume ventilation, we studied the time course and reversibility of ventilator-induced changes in permeability and distal air space edema fluid clearance in a rat model of ventilator-induced lung injury. Anesthetized rats were ventilated with a high tidal volume (30 ml/kg) or with a high tidal volume followed by ventilation with a low tidal volume of 6 ml/kg. Endothelial and epithelial protein permeability were significantly increased after high tidal volume ventilation but returned to baseline levels when tidal volume was reduced. The basal distal air space fluid clearance (AFC) rate decreased by 43% (P < 0.05) after 1 h of high tidal volume but returned to the preventilation rate 2 h after tidal volume was reduced. Not all of the effects of high tidal volume ventilation were reversible. The cAMP-dependent AFC rate after 1 h of 30 ml/kg ventilation was significantly reduced and was not restored when tidal volume was reduced. High tidal volume ventilation also increased lung inducible nitric oxide synthase (NOS2) expression and air space total nitrite at 3 h. Inhibition of NOS2 activity preserved cAMP-dependent AFC. Because air space edema fluid inactivates surfactant and reduces ventilated lung volume, the reduction of cAMP-dependent AFC by reactive nitrogen species may be an important mechanism of clinical ventilator-associated lung injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GABA receptor ameliorates ventilator-induced lung injury in rats by improving alveolar fluid clearance

INTRODUCTION Mechanical ventilators are increasingly used in critical care units. However, they can cause lung injury, including pulmonary edema. Our previous studies indicated that γ-aminobutyric acid (GABA) receptors are involved in alveolar-fluid homeostasis. The present study investigated the role of GABA receptors in ventilator-induced lung injury. METHODS Adult female Sprague-Dawley rat...

متن کامل

Dopamine increases lung liquid clearance during mechanical ventilation.

Short-term mechanical ventilation with high tidal volume (HVT) causes mild to moderate lung injury and impairs active Na+ transport and lung liquid clearance in rats. Dopamine (DA) enhances active Na+ transport in normal rat lungs by increasing Na+-K+-ATPase activity in the alveolar epithelium. We examined whether DA would increase alveolar fluid reabsorption in rats ventilated with HVT for 40 ...

متن کامل

Congenital NOS2 deficiency prevents impairment of hypoxic pulmonary vasoconstriction in murine ventilator-induced lung injury.

Hypoxic pulmonary vasoconstriction (HPV) preserves systemic arterial oxygenation during lung injury by diverting blood flow away from poorly ventilated lung regions. Ventilator-induced lung injury (VILI) is characterized by pulmonary inflammation, lung edema, and impaired HPV leading to systemic hypoxemia. Studying mice congenitally deficient in inducible nitric oxide synthase (NOS2) and wild-t...

متن کامل

Effect of ventilation pressure on alveolar fluid clearance and beta-agonist responses in mice.

High tidal volume ventilation is detrimental to alveolar fluid clearance (AFC), but effects of ventilation pressure (P) on AFC are unknown. In anesthetized BALB/c mice ventilated at constant tidal volume (8 ml/kg), mean AFC rate was 12.8% at 6 cmH(2)O P, but increased to 37.3% at 18 cmH(2)O P. AFC rate declined at 22 cmH(2)O P, which also induced lung damage. Increased AFC at 18 cmH(2)O P did n...

متن کامل

Nasal high flow reduces hypercapnia by clearance of anatomical dead space in a COPD patient

Chronic obstructive pulmonary disease (COPD) with hypercapnia is associated with increased mortality. Non-invasive ventilation (NIV) can lower hypercapnia and ventilator loads but is hampered by a low adherence rate leaving a majority of patients insufficiently treated. Recently, nasal high flow (NHF) has been introduced in the acute setting in adults, too. It is an open nasal cannula system fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 284 5  شماره 

صفحات  -

تاریخ انتشار 2003